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A pseudospectral numerical scheme is developed in order to calculate the propagation of a 
shock wave. We use a two-step time-differencing method and a Chebyshev transform method 
to compute the space derivative. Such a scheme has been used to reduce the oscillations due 
to Gibbs phenomenon. This numerical method is applied to the solution of the Burgers 
equation without viscosity term. The accuracy of the numerical solutions is compared to the 
one given by two finite difference methods. 

1. INTRODUCTION 

Pseudospectral methods have been applied with some success to the solution of 
initial value problems in fluid dynamics and plasma physics. In a pseudospectral 
method, an expansion of the dependent variable into a discrete series of orthogonal 
functions is used to evaluate directly the spatial derivatives, the time differencing 
being calculated with a finite difference scheme. The accuracy of the space derivative 
of the dependent variable is of infinite order, provided that all derivatives of the 
variable are continuous. For variables having continuous derivatives only up to mth 
order, the coefficients in the series decrease as k- (m+ ‘). For a shock wave, the coef- 
ficients of the series decrease as k-l; therefore, the convergence of the space 
derivative series is poor: O(1). Moreover, by retaining only the first N terms in the 
series, oscillations appear in the solution due to Gibb’s phenomenon, well studied in 
classical textbooks [ 1, p. 1861. For an iterative numerical scheme, these oscillations 
will grow rapidly as time goes on and destroy the solution to the problem. 

The first thing one can do is introduce either explicit or implicit dissipative terms 
in the numerical scheme to improve the convergence of the space derivative to 
O(k-‘). The profile of the shock solution, however, still exhibits important 
oscillations, though they are reduced by the dissipation. One can instead apply 
smoothing and filtering techniques either to the function or to the derivative itself. 

A few attempts have been made to solve this problem. In this paper, we shall 
review the different techniques used in the literature to reduce these undesirable 
oscillations. 

The first numerical results were obtained by Gazdag [2] for the numerical solution 
of the Burgers equation with a viscosity term for an initial step function condition. 

146 
0021.9991/82/070146-14$02.00/O 
Copyright 0 1982 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



NUMERICAL CALCULATION OF SHOCKS 147 

He presented numerical results for different Reynolds numbers from 1 to 5. The 
computation was performed with 256 modes, and a Taylor expansion of order three 
was used to calculate the time derivative. The program is time-consuming, since it 
implies the computation of several space derivatives. Moreover, for Reynolds number 
5, one can see the Gibbs oscillations in Gazdag’s results. Gazdag [3] presented a 
new method called a partially corrected second order Adams-Bashforth Scheme, 
where the number of space derivatives to be calculated is reduced to three. Numerical 
results are shown for the numerical integration of the Vlasov equation. The second 
approach was presented by Roache [4]. It consists of decomposing the dependent 
variable f(x) into a sum of a polynomial g(x) and a residual periodic function h(x) 
calculated with an FFT. 

The values of the coefficients in the polynomial expansion g(x) are evaluated with 
either the given derivatives of the function f(x) at the boundaries or by one-sided 
finite difference methods. Although oscillations are reduced by the use of a 
polynomial expansion g(x), they still remain important. Moreover, the case of a 
shock wave entering or leaving a boundary will not be represented correctly by this 
technique [4, p. 2111. 

The third method uses smoothing and filtering techniques. These techniques were 
first introduced by Majda et al. [5], who used them to smooth both the initial 
conditions and the solution of the problem at each time step. These methods were 
extended to hydrodynamics problems [6, 71, where both smoothing and filtering were 
applied every 100 time steps. These techniques are more or less problem-dependent 
and well suited for moderate shock waves. It is interesting to note several papers 
[&lo] related to Gibbs phenomenon and Fourier series approach to the Burgers 
equation. 

In this paper we shall study a two-step pseudospectral scheme which drastically 
and automatically reduces the amplitude of Gibb’s oscillations. 

2. STUDY OF THE TRUNCATION TERMS 

The derivative of a discontinuous function F(x), when evaluated with a truncated 
Chebyshev polynomial expansion, exhibits two point oscillations of wavelength 
Li = 2dx, over the whole mesh. Since the mesh is nonuniform, the spectrum of these 
oscillations is large. They can be completely eliminated by using the following 
filtering for a function F(x): We have 

F(x)= 5 cma,Tm(x), 
aF 
ax= 5 crd, T,(x), 

??I=0 m=O 

with the recurrent relations: 

b,=b,-,=O and b,-, = b,,, + 2(sin(7rm/M)/sin(n/M)) a, 

for 1 <m<M-- 1. 
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It is not diff’cult, however, to show that the derivative is just the second-order finite 
difference of the derivative: 

aF Fi+l -Fi-1 
ax= x(+1 -xi-1 + O(d2x). 

In this case, one cannot expect an accuracy higher than second order, and one loses 
the advantage of the high accuracy of the pseudospectral method. 

Moreover, in a numerical scheme, this method does not prevent oscillations from 
growing as time goes on. It is well known that oscillations appear behind the shock 
when the fluid dynamic equations are solved numerically by second-order finite 
difference schemes. It has been recognized [ 1 l-141 that the presence or absence of 
oscillations behind the shock in finite difference methods must be attributed to the 
dissipative or nondissipative character of some truncation terms. 

For example, the oscillations given by the Lax-Wendroff scheme are bounded 
while those of the Leapfrog scheme are not. These oscillations have been generally 
smoothed out by introducing an explicit dissipative term called pseudoviscosity. 

Lerat and Peyret [5] explained that oscillations can be better cancelled by 
correcting the nondissipative truncation terms. This can be easily done in two-step 
finite difference schemes. 

The profile of a shock wave calculated with a pseudospectral method exhibits 
oscillations throughout the mesh, not only behind the front as in finite difference 
methods. Moreover, the accuracy of the scheme will depend on both the time and 
space truncation terms. In the case of a shock wave, the space series truncation term 
is important due to the poor convergence of the series. 

The similarity of the oscillations in both finite difference and pseudospectral 
schemes suggests a way to solve this problem by choosing a two-step pseudospectral 
scheme with implicit dissipation that will drastically reduce the oscillations without 
losing too much of the accuracy of the pseudospectral scheme. 

3. TWO-STEP PSEUDOSPECTRAL SCHEME 

In order to solve the nonlinear equation 

(1) 

Lerat and Peyret [6,7] have introduced a class of two-step finite difference schemes 
9; depending on two parameters a and p given by the two equations 

@‘m=(l-/?)U;+/?U~+I-(adt/dx)(F;+,-F~), (2) 

u ~“=U~-(dt/2adx)((a-j3)F~+,+(2/?-1)F; 

+ (1 -a-P)F;+fl+“-fi?P), 



NUMERICAL CALCULATION OF SHOCKS 149 

with 

.q=(i+/3)Llx, t,=(n+a)dt. 

For some specific values of the parameters a and p, one can recover some well- 
known schemes: 

(i) two-step Lax-Wendroff scheme, 9 :$, 

(ii) MacCormack schemes, .YA and .Y!, 

(iii) Rubin and Burstein schemes, Y’:,,. 

3.1. Two-step Pseudospectral Scheme 

By analogy, we introduce a class of two-step pseudospectral schemes written in the 
form 

with-l<a<l and-l<p<l. 
Such a scheme consists of a predictor time step, where the oscillations of this step 

are, by a noncentered differencing of the Lax term, out of phase with and of the same 
amplitude as the ones of the preceding time step, so that they cancel one another 
when added in the corrector time step. 

3.2. Chebyshev Polynomial Expansion 

We can use a Chebyshev polynomial expansion to evaluate the function F and its 
derivative. In this case, we have to specify on the interval (-1, 1) the A4 + 1 values of 
the function F,(U(xi, t)) at the grid points xi = cos(lri/M). With this choice, we have 

Fi = 5 c,%(t) T&J. 
m=o 

This expression can be calculated with an FFT by 

Fi= i 
27rmi 

c,a, cos -, 
m=O N 

(4) 

(5) 

with N=2M and a,=0 for M+ 1 <m<N c,=O.5 for m=O, c,=l otherwise. 
The coefficients a, may be evaluated by the inverse transform of (5) 

4 N 27rmi 
a,,,=- c ciFicos-, 

N i=o N 

with F,=O for M+ 1 <iQN. 
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By Eq. (5) and properties of the Chebyshev polynomials, one can calculate an 
expansion for the derivative: 

8F 
- : c b T W, ax-,=o In m m 

where the coefficients b, can be computed from the a, by using the recurrent 
relations 

b,=O, b,-, =Ma,, b,-,=b,+,+2ma, 

for 1 <m<M- 1. (8) 

3.3. Unconditionally Stable Pseudospectral Scheme 

Gottlieb and Turkel [8] presented a scheme achieving unconditional stability and 
avoiding the severe condition At < 8/M’ for pseudospectral methods using Chebyshev 
polynomials. The time step At is in this case limited only by accuracy. 

This approach can be illustrated by an example. To solve 

au au 
at=aax (9) 

with a Leapfrog pseudospectral scheme, we write 

M-l 

u;+’ = Uy-’ + 2a At c E”,jmejmiAx (10) 
m=O 

with the stability condition At < l/]a](M - 1). Equation (10) can be rewritten in the 
form 

M-1 

q+ = Ur-’ + 2a/o 2 Elj sin(mc At) ejmiAx. (11) 
m=O 

Now the scheme is unconditionally stable provided that the condition la/al < 1 is 
verified. 

In this approach the recurrent relations (8) are modified as follows: 

b, = 0, b,-, = sin(Mu At)(a,/a), 

L,=b,+, + 2 sin(ma At)(a,/a). 
(12) 
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4. ACCURACY, STABILITY, AND CONSISTENCY 

The question of accuracy, stability, and consistency is more difficult to study for a 
pseudospectral scheme than for a finite difference scheme [ 161. Therefore, we shall 
now give a heuristic approach to this question. Consider the equation 

A second order truncated Taylor series is given by 

u i?‘U A’t 
“‘=Un+$(At)+TT. 

A possible numerical approach of equation (13) is 

Substitution of equation (14) in equation (15) gives the truncation term: 

13iY 8F c?‘U At 
at+%=- at’ yjy + O(.A’t). 

(13) 

(14) 

Gazdag [2] showed that this method is unstable. Let a positive shock wave propagate 
in the positive direction X; for p = 0 and a = -1, the pseudospectral scheme becomes: 

This last equation can be written in the form: 

The first-order Taylor expansion of U(x) in x is 

(16) 

u;-, = 
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Substitution of this equation in the first equation of (16) gives 

@+‘=u;- (g);Ax- (~);At+o(A’t)+o(dix). 

Then we have: 

(!.E).“= (2-F)) (?.g,.,,- (g)~At+O(A’t)+O(A’x). 

Finally, we get the truncation term of the two-step pseudospectral scheme: 

c?F 6”U 8U #F - ~ax’+~ax’ 1 AxAt+O(A2x) t O(A2t) (17) 

We notice that the right-hand terms of this equation are all positive and that the 
negative term -i32U/i3t2 has been cancelled out. This implies stability. The numerical 
scheme is consistent if the truncation term goes to zero as Ax and At tend to zero, 
which is the case here. Moreover, one can see that the accuracy of the numerical 
scheme is at least O(Ax At). 

5. COMPUTATIONAL RESULTS 

The pseudospectral scheme three has been tested on Burger’s equation, without 
viscosity term, written in conservative form: 

$+-g &J2 =o. 
[ I 

The numerical results obtained with this scheme are compared with those of the 
following two finite-difference schemes: 

(19) 

~"+(l,,+b) -Fn+(l/L+4) 
t (1 +P) i+l i-l 

I 
At 

xitl -Xi-l 1tatP' 



TABLE I 

Position of the front at time 

Table M At 

2 32 10-Z 
3 32 lo-* 
4 32 10-2 
5 32 2 x 10-z 
6 64 2.5 x 1O-3 

t=O 

point 11 
point 17 
point 17 
point 17 
point 33 

t=l 

point 1 l/12 
point 1 l/12 
point 1 l/l 2 
point 1 l/12 
point 22123 

TABLE II 

Error Function of U(x) at Time 1 for Initial Conditions 1 

X M.P.” L.W.6 M.C.’ 

2 -3 
3 3 
4 -4 
5 5 
6 -6 
I 9 
8 -1 
9 3 

10 1 
11 5 
12 -1.7 
13 -3 
14 -7 
15 1 
16 -3 
17 0 
18 -2 
19 0 
20 -2 
21 0 
22 -2 
23 0 
24 -1 
25 0 
26 -1 
27 0 
28 -6 
29 -1 
30 -4 
31 0 
32 3 

(-3) 
(-3) 
(-3) 
(-3) 
(-3) 

(-2) 
t-21 
t-11 
t-11 
t-11 
C-2) 
(-3) 
(-3) 
(-3) 
(-3) 
(-3) 
(-3) 
(-3) 
(-3) 
(-3) 
(-3) 
(-3) 
(-3) 
(-3) 
(-3) 
(-4) 
(-4) 
(-4) 
(-4) 
(-4) 

0 
0 
0 
0 
0 
0 
0 
3 
2 
3 

-7.8 
4.8 
4 
3 
3 

-5 
-5 

4 
4 
2 
2 

-2.6 
-2.6 

2 
2 

-1.3 
-1.4 

6 
8 
5 
5 

(-3) 
(-3) 
(-3) 
(-3) 
(-3) 
(-3) 
(-3) 

t-11 
t-11 
C-1) 
C-1) 
t-11 
(-1) 
t-11 
t-11 
(-2) 
C-2) 
t-11 
C-1) 
C-1) 
C-1) 
C-1) 
(-1) 
(-1) 
(F-1) 
C-2) 
C-2) 
C-2) 
C-2) 

0 (-3) 
0 (-3) 
0 (-3) 
0 (-3) 
0 (-3) 
0 (-3) 
2 (-3) 
4 (-2) 
1.5 t-11 
5 t-11 

-2.4 (e-1) 
2 c-2) 

-2 C-2) 
5 t-21 

-7 C-2) 
5 C-2) 

-6 C-2) 
5 C-2) 

-4 C-2) 
2 C-2) 

-2 C-2) 
7 (-3) 

-3 (-3) 
1 (-3) 

-I (-3) 
3 (-4) 

-1 (-3) 
1 (-4) 

-1 (-4) 
0 (-4) 
0 (-4) 

’ M.P.: pseudospectral scheme a = 1, p = 0. 
b L.W.: Lax-Wendroff scheme a = 0, fi = 1. 
c MC.: MacCormack scheme a = 1, /? = 0. 
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With Lax-Wendroff scheme 

a=0 and p= 1; 

with MacCormack scheme 

a=1 and p = 0. 

The space derivatives of these finite difference schemes are generally calculated 
over half-mesh increments xi+ 1,2 - xi- ,,2. The numerical results presented here, 
however, should be independent of such a choice. 

TABLE III 

Error Function of U(x) at Time 1 for Initial Conditions 2 

X M.P.” L.W.6 MC.’ 

2 -1 (-4) 0 
3 1 (-4) 0 
4 -1 (-5) 0 
5 2 C-5) 0 
6 4 (-5) 0 
I -1 (-4) 0 
8 3 (-3) 0 
9 6 C-2) 4 

10 3 t-11 5 
11 I t-11 3 
12 -1 (-2) -1.7 
13 -1 t-21 5 
14 -1 (-3) 6 
15 -3 (-4) 3 
16 2 (-4) -1.8 
17 -2 (-4) -5 
18 1 (-4) -2.1 
19 -1 (-4) 4 
20 1 (-4) 2.5 
21 -1 (-4) 2 
22 1 (-4) -1 
23 -1 (-4) -2.6 
24 1 (-4) 0 
25 -1 (-4) 2 
26 0 (-4) 3 
21 0 (-4) -1.3 
28 1 (-4) -3 
29 1 (-4) 6 
30 0 (-4) 2 
31 0 (-4) -5 
32 0 (-4) -2 

(-3) 
t-21 
t-11 
C-1) 
C-1) 
C-1) 
t-11 
C-1) 
t-11 
C-1) 
C-2) 
C-1) 
C-1) 
t-11 
t-11 
(F-1) 
C-1) 
t-21 
(-1) 
(-2) 
C-2) 
C-2) 
C-2) 
C-2) 

0 
0 
0 
0 
0 
8 
1.5 
9 
3 
6 

-6 
2 
2 

-8 
-2 
-1 
-3 

1 
-9 

7 
5 
2 

-2 
6 

-3 

-1 
0 

-1 
0 
0 

(-2) 
t-21 
C-1) 
C-1) 
t-21 
C-2) 
C-2) 
(-3) 
(-3) 
(-4) 
(-3) 
(-3) 
(-3) 
(-3) 
(-3) 

(-4) 
(-4) 
(-4) 
(-4) 
(-4) 
(-4) 
(-4) 
(-4) 

’ M.P.: pseudospectral scheme OT = 1, j3 = 0. 
b L. W.: Lax-Wendroff scheme a = 0, /I = 1. 
’ MC.: MacCormack scheme a = 1, /I = 0. 
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These schemes are used with two sets of initial conditions: 

U(x,O)= 1, for -1 <x<O, 

= 0, for O<x< 1. 

U(x, 0) = 1, for -1 <x<O, 

= 0.5, for x = 0.098, 

= 0, for 0.098 < x < 1, 

and with a boundary condition U(-1, t) = 1. 

(1) 

(11) 

TABLE IV 

Error Function of U(x) at Time 1 for Initial Conditions 1 

X M.P. 1” 

2 -3 t-31 
3 3 t-31 
4 -4 C-3) 
5 5 t-31 
6 -6 t-31 
I 9 (-3) 
8 -1 t-21 
9 3 t-21 

10 1 t-11 
11 5 C-1) 
12 -1.7 C-1) 
13 -3 t-21 
14 -3 (-3) 
15 1 (-3) 
16 -2 C-3) 
17 0 C-3) 
18 -2 t-31 
19 0 t-31 
20 -2 C-3) 
21 0 t-31 
22 -2 t-31 
23 1 t-41 
24 -1 t-31 
25 1 t-41 
26 -1 e-4) 
21 0 t-41 
28 -6 t-41 
29 -1 C-4) 
30 -4 t-41 
31 0 C-4) 
32 -3 (-4) 

M.P. 2’ 

-1 C-2) 
1 t-21 

-1 C-2) 
117 t-21 

-1.8 t-21 
2 C-2) 

-3 C-2) 
6 c-2) 
1 t-11 
5 C-1) 

-2 C-1) 
-4 (-2) 
-1 C-2) 
-1 t-31 
-2 C-3) 

0 C-3) 
2 C-3) 
0 (-3) 

-9 t-41 
-1 t-41 
-1 (-4) 
-1 C-4) 
-5 C-4) 
-1 C-4) 
-4 (-4) 
-1 C-4) 
-4 t-41 
-1 t-41 
-3 (-4) 

0 C-4) 
-3 t-41 

M.P. 3’ 

-1 
1 

-1 
1.7 

-1.8 
2 

-3 
5 
1 
5 

-1.7 
-6 

6 
2 

-1 
-6 
-6 
-5 
-6 
-4 
-4 
-3 
-3 
-2 
-2 
-2 
-2 
-2 
-2 
-1 
-1 

t-21 
t-21 
C-4 
(-7-l 
(-2) 
(-2) 
t-21 
C-2) 
C-2) 
t-11 
t-11 
C-3) 
C-3) 
(-3) 
C-4) 
(-4) 
C-4) 
C-4) 
C-4) 
t-41 
(-4) 
C-4) 
(-4) 
t-41 
t-41 
t-41 
(-4) 
C-4) 
C-4) 
C-4) 
C-4) 

LI M.P. 1: pseudospectral scheme a = 1, /3 0. = 
’ M.P. 2: pseudospectral scheme a = 1, /3 = 0.1. 
’ M.P. 3: pseudospectral scheme a = 0.86, /I 0.1. = 

581/47/l-11 
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The initial position of the shock front is set in the middle of the mesh at x = 0. The 
shock wave propagates in the direction x > 0 (decreasing point number in the tables). 
All numerical results are presented at time 1. 

All numerical computations were performed with the number of modes and time 
steps indicated in Table (I). The time steps chosen for these tests are higher than the 
maximum permissible time step dt < 8/M* [9, p. 1 IO], except in Table V, where the 
numerical scheme is unconditionally stable. 

Tables II and III: A comparison of pseudospectral and finite difference schemes for 
two different sets of initial conditions. 

TABLE V 

Error Function of U(x) at Time 1 for Initial Conditions 2 

x M.P. 1” M.P. 2h M.P. 3’ 

2 -1 (-4) 
3 1 (-4) 
4 -7 C-5) 
5 2 (-5) 
6 4 (-5) 
I -1 (-4) 
8 2 (-3) 
9 6 t-21 

10 3 t-11 
11 I C-1) 
12 -1 C-2) 
13 -2 C-2) 
14 -1 (-3) 
15 -3 (-4) 
16 0 (-4) 
17 -2 (-4) 
18 0 (-4) 
19 -2 (-4) 
20 1 (-4) 
21 -8 (-5) 
23 -3 (-5) 
24 1 (-4) 
25 -2 (-5) 
26 0 (-5) 
21 0 (-5) 
28 0 (-5) 
29 0 (-5) 
30 0 (-5) 
31 0 (-5) 
32 1 (-5) 

-2 
2 

-3 
3 

-3 
4 

-4 
1 
3 
1 

-9 
-1 
-2 

1 
-1 

1 
-1 

1 
-1 

1 
2 

-1 
2 

-2 
2 

-3 
-1 

7 
-2 

4 

C-2) 
C-2) 
C-2) 
C-2) 
C-2) 
C-2) 
t-21 
(-1) 
(-1) 
(--I) 
e-2) 
C-2) 
C-2) 
t-21 
t-21 
C-2) 
(-2) 
C-2) 
C-2) 
(-2) 
C-2) 
C-2) 
t-21 
t-4 
C-2) 
C-2) 
C-2) 
C-2) 
C-1) 
C-2) 

-3 
3 

-3 
3 

-2 
1 
4 
7 
3 
I 

-1 
-2 
-1 
-1 

0 
-1 

0 
-1 

0 
0 
2 

-1 
2 

-3 
5 

-9 
2 

-3 
-3 

5 

(-4) 
(-4) 
(-4) 
(-4) 
(-4) 
(-4) 
(-3) 
t-21 
t-21 
t-21 
t-4 
t-21 
C-2) 
(-2) 
C-2) 
C-2) 
C-2) 
(-4) 
(-4) 
(-4) 
(-4) 
(-4) 
(-4) 
(-4) 
(-4) 
(-4) 
(-4) 
(-3) 
(-4) 
(-3) 

’ M.P. 1: pseudospectral scheme without u, a = 1, /I = 0. 
b M.P. 2: pseudospectral scheme u = 1, a = 1, /I = 0. 
’ M.P. 3: pseudospectral scheme (I = 2, a = 1, /I = 0. 
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Table IV: The influence of the parameters cz and j? on the solution of the problem 
for an initial step function. 

Table V: The results of the pseudospectral schemes in the case of conditional 
(without) or unconditional (with u = 1, 2) stability. 

Table VI: The results of the pseudospectral and MacCormack schemes computed 
with 64 modes. 

We see in Table VI: the higher accuracy obtained with the pseudospectral scheme 

TABLE VI 

Error Functions of U(x) at Time 1 for Initial Conditions 1 

X M.P.” M.C.* X M.P.” MC.* 

2 2 (-4) 
3 -2 (-4) 
4 2 (-4) 
5 -I (-4) 
6 5 (-5) 
1 4 (-5) 
8 -1 (-4) 
9 3 (-4) 

10 -5 (-4) 
11 1 (-4) 
12 -1 (-3) 
13 1 (-3) 
14 -2 (-3) 
15 2 (-3) 
16 -3 (-3) 
17 4 (-3) 
18 -6 (-3) 
19 9 (-3) 
20 1 (-2) 
21 2 C-1) 
22 6 t-11 
23 -9 t-21 
24 -2 t-21 
25 0 (-3) 
26 -2 (-3) 
21 1 (-3) 
28 -2 (-3) 
29 1 (-3) 
30 -2 (-3) 
31 1 (-3) 
32 -2 (-3) 

0 33 
0 34 
0 35 
0 36 
0 31 
0 38 
0 39 
0 40 
0 41 
0 42 
0 43 
0 44 
0 45 
0 46 
0 47 
1 (-6) 48 
1 (-4) 49 
5 (-3) 50 
5 (-2) 51 
2 (-1) 52 
5 (-1) 53 

-1 (-1) 54 
2 (-2) 55 
4 (-2) 56 

-2 (-2) 57 
1 (-2) 58 

-3 (-2) 59 
3 (-2) 60 

-4 (-2) 61 
4 (-2) 62 

-5 (-2) 63 

0 (-3) 
-2 (-3) 

0 (-3) 
-1 (-3) 

4 (-4) 
-9 (-4) 

4 (-4) 
-9 (-4) 

3 (-4) 
-7 (-4) 

3 (-4) 
-6 (-4) 

3 (-4) 
-5 (-4) 

2 (-4) 
-4 (-4) 

2 (-4) 
-4 (-4) 

2 (-4) 
-3 (-4) 

1 (-4) 
-3 (-4) 

1 (-4) 
-2 (-4) 

1 (-4) 
-2 (-4) 

0 (-4) 
-2 (-4) 

0 (-4) 
-2 (-4) 

0 (-4) 

4 
-5 

4 
-4 

3 
-3 

1 
-1 

7 
-4 

2 
-1 

5 
-3 

1 
-4 

0 
-1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

C-2) 
(-2) 
C-2) 
C-2) 
(-2) 
t-4 
t-4 
C-2) 
(-3) 
(-3) 
(-3) 
(-3) 
(-4) 
(-4) 
(-4) 
(-5) 
(-5) 
(-5) 
(-5) 
(-5) 
(-5) 
(-5) 
(-5) 
(-5) 
(-5) 
(-5) 
(-5) 
(-5) 
(-5) 
(-5) 
(-5) 

’ M.P.: pseudospectral scheme a = 1, p = 0. 
* M.C.: MacCormack scheme a = 1, p = 0. 
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between the points 19 and 48. Outside these points, we still have small residual 
Gibb’s oscillations, the magnitude of which is about 10P4. 

The higher accuracy obtained with the pseudospectral scheme is balanced by an 
increase of a factor of four in computer time. The difference between finite difference 
and pseudospectral computer times is due solely to the calculation of the space 
derivatives by the routine DERIV. The operation count could be easily reduced by a 
factor of four by operating on M modes instead of 2 A4 modes in the two calls of the 
FFT, and by writing the FFT in machine language. For the unconditionally stable 
scheme, the computing time is reduced to twice that of a finite difference method. 

6. CONCLUSION 

The results presented here show that pseudospectral methods can be applied to the 
calculation of a shock wave. The accuracy obtained is higher than that of a finite 
difference method for a given number of mesh points. This scheme with a simple 
routine DERIV requires more computer time than the one for a finite difference 
scheme. 

For a given precision, however, this scheme should be faster than any finite 
difference scheme, especially if one used the unconditionally stable pseudospectral 
scheme. 

This scheme can be extended to the case of n-dimensional problems with a more 
important gain in computer time. 
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